• Development of functional materials and electrospun devices for the prevention of the spreading of infectious diseases
  • Torsello, Monica <1986>

Subject

  • ING-IND/34 Bioingegneria industriale

Description

  • This Thesis addresses critical challenges posed by the COVID-19 pandemic, focusing on the transmission dynamics, shortage of face masks, and the urgent need for reliable diagnostics. Initially, the lack of comprehensive information on transmission modes, particularly aerosolized and fomite transmission, and the significance of asymptomatic carriers fueled debates. The surge in demand for face masks strained global production, especially in China, the epicenter of the pandemic. Common disinfection methods for face masks proved unsuitable, prompting research into alternative materials. The study involves an extensive analysis of surgical mask durability, revealing a decline in filtration efficiency with extended use. A protocol was developed to estimate real-world mask lifespan through empirical evaluations. Simultaneously, alternative face mask filters were developed using electrospun polyvinylidene fluoride (PVDF) material, demonstrating superior bacterial filtration efficiency, breathability, and long-lasting electrostatic properties. To explore the potential of face masks in viral material collection, preliminary tests using commercial masks and electrospun filters were conducted with Bovine Coronavirus as a model virus. Electrospun PVDF masks exhibited higher virus recovery efficiency than commercial masks, suggesting their utility as sample collection devices. Furthermore, the Thesis introduces a novel autodiagnostic material for surface disinfection, crucial for fomite transmission prevention. The material, composed of a solvatochromic PA6,6 electrospun layer, a superabsorbent layer for disinfectant release, and a protective plastic film, changes color upon disinfectant depletion. Proof-of-concept experiments validated its regenerable disinfection capabilities for at least 24 hours. In conclusion, this Thesis contributes to understanding face mask dynamics during a pandemic, proposes an electrospun PVDF alternative, explores face masks for viral sample collection, and introduces a novel autodiagnostic material for efficient and regenerable surface disinfection. These findings have significant implications for public health, providing insights and solutions to combat infectious diseases.

Date

  • 2024-03-27
  • info:eu-repo/date/embargoEnd/2027-02-14

Type

  • Doctoral Thesis
  • PeerReviewed

Format

  • application/pdf

Identifier

urn:nbn:it:unibo-30265

Torsello, Monica (2024) Development of functional materials and electrospun devices for the prevention of the spreading of infectious diseases, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze e tecnologie della salute , 36 Ciclo.

Relations