• Estimation of Jupiter's system ephemerides and dissipative parameters through radio tracking of deep space missions
  • Magnanini, Andrea <1995>

Subject

  • ING-IND/05 Impianti e sistemi aerospaziali

Description

  • Tidal dissipation is a key factor in creating mean motion resonance among satellites, particularly observed with Jupiter and its Galilean moons. This phenomenon is believed to drive the formation and potential dissolution of the Laplace Resonance, which has significant implications for the habitability of ocean worlds like Europa and Ganymede. The forthcoming JUICE and Europa Clipper missions will provide critical data by closely examining these moons, including more than 50 flybys of Europa and a prolonged orbit around Ganymede. These missions aim to gather precise measurements of the moons' gravity fields and orbits, enhancing our understanding of tidal dissipation within Jupiter. This dissipation is quantified through the imaginary part of the degree-2 Love numbers of the moons, which are complicated by the interconnectedness caused by the Laplace resonance. Additionally, the Io flybys by the Juno mission in December 2023 and February 2024, alongside historical data from the Galileo mission, will complement this dataset by providing insights into Io's role in the Jovian system's dynamics. Integrating this spacecraft data with over 120 years of ground-based astrometry will optimize the accuracy of dissipation parameter estimates in Jupiter, essential for understanding the long-term orbital dynamics of the Galilean moons, which may have characteristic frequencies spanning several decades.

Date

  • 2024-07-04
  • info:eu-repo/date/embargoEnd/2026-01-01

Type

  • Doctoral Thesis
  • PeerReviewed

Format

  • application/pdf

Identifier

urn:nbn:it:unibo-30530

Magnanini, Andrea (2024) Estimation of Jupiter's system ephemerides and dissipative parameters through radio tracking of deep space missions, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze e tecnologie aerospaziali , 36 Ciclo.

Relations