• Multicomponent nanodevices based on molecular and nanocrystal moieties
  • Avellini, Tommaso <1985>


  • CHIM/03 Chimica generale e inorganica


  • Nanoscience is an emerging and fast-growing field of science with the aim of manipulating nanometric objects with dimension below 100 nm. Top down approach is currently used to build these type of architectures (e.g microchips). The miniaturization process cannot proceed indefinitely due to physical and technical limitations. Those limits are focusing the interest on the bottom-up approach and construction of nano-objects starting from “nano-bricks” like atoms, molecules or nanocrystals. Unlike atoms, molecules can be “fully programmable” and represent the best choice to build up nanostructures. In the past twenty years many examples of functional nano-devices able to perform simple actions have been reported. Nanocrystals which are often considered simply nanostructured materials, can be active part in the development of those nano-devices, in combination with functional molecules. The object of this dissertation is the photophysical and photochemical investigation of nano-objects bearing molecules and semiconductor nanocrystals (QDs) as components. The first part focuses on the characterization of a bistable rotaxane. This study, in collaboration with the group of Prof. J.F. Stoddart (Northwestern University, Evanston, Illinois, USA) who made the synthesis of the compounds, shows the ability of this artificial machine to operate as bistable molecular-level memory under kinetic control. The second part concerns the study of the surface properties of luminescent semiconductor nanocrystals (QDs) and in particular the effect of acid and base on the spectroscopical properties of those nanoparticles. In this section is also reported the work carried out in the laboratory of Prof H. Mattoussi (Florida State University, Tallahassee, Florida, USA), where I developed a novel method for the surface decoration of QDs with lipoic acid-based ligands involving the photoreduction of the di-thiolane moiety.


  • 2013-04-17


  • Doctoral Thesis
  • PeerReviewed


  • application/pdf



Avellini, Tommaso (2013) Multicomponent nanodevices based on molecular and nanocrystal moieties, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze chimiche , 25 Ciclo. DOI 10.6092/unibo/amsdottorato/5701.