• Analysis of ion channel stochastic signals for biosensing
  • Lodesani, Francesco <1978>


  • ING-INF/06 Bioingegneria elettronica e informatica


  • In biological world, life of cells is guaranteed by their ability to sense and to respond to a large variety of internal and external stimuli. In particular, excitable cells, like muscle or nerve cells, produce quick depolarizations in response to electrical, mechanical or chemical stimuli: this means that they can change their internal potential through a quick exchange of ions between cytoplasm and the external environment. This can be done thanks to the presence of ion channels, proteins that span the lipid bilayer and act like switches, allowing ionic current to flow opening and shutting in a stochastic way. For a particular class of ion channels, ligand-gated ion channels, the gating processes is strongly influenced by binding between receptive sites located on the channel surface and specific target molecules. These channels, inserted in biomimetic membranes and in presence of a proper electronic system for acquiring and elaborating the electrical signal, could give us the possibility of detecting and quantifying concentrations of specific molecules in complex mixtures from ionic currents across the membrane; in this thesis work, this possibility is investigated. In particular, it reports a description of experiments focused on the creation and the characterization of artificial lipid membranes, the reconstitution of ion channels and the analysis of their electrical and statistical properties. Moreover, after a chapter about the basis of the modelling of the kinetic behaviour of ligand gated ion channels, a possible approach for the estimation of the target molecule concentration, based on a statistical analysis of the ion channel open probability, is proposed. The fifth chapter contains a description of the kinetic characterisation of a ligand gated ion channel: the homomeric ╬▒2 isoform of the glycine receptor. It involved both experimental acquisitions and signal analysis. The last chapter represents the conclusions of this thesis, with some remark on the effective performance that may be achieved using ligand gated ion channels as sensing elements.


  • 2008-04-07


  • Doctoral Thesis
  • PeerReviewed


  • application/pdf



Lodesani, Francesco (2008) Analysis of ion channel stochastic signals for biosensing, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Tecnologie dell'informazione , 20 Ciclo. DOI 10.6092/unibo/amsdottorato/1125.