• The biological basis of autism spectrum disorders: evaluation of oxidative stress and erytrocyte membrane alterations
  • Ghezzo, Alessandro <1962>


  • BIO/13 Biologia applicata


  • This case-control study involved a total of 29 autistic children (Au) aged 6 to 12 years, and 28 gender and age-matched typically developing children (TD). We evaluated a high number of peripheral oxidative stress parameters, erythrocyte and lymphocyte membrane functional features and membrane lipid composition of erythrocyte. Erythrocyte TBARS, Peroxiredoxin II, Protein Carbonyl Groups and urinary HEL and isoprostane levels were elevated in AU (confirming an imbalance of the redox status of Au); other oxidative stress markers or associated parameters (urinary 8-oxo-dG, plasma Total antioxidant capacity and plasma carbonyl groups, erythrocyte SOD and catalase activities) were unchanged, whilst peroxiredoxin I showed a trend of elevated levels in red blood cells of Au children. A very significant reduction of both erythrocyte and lymphocyte Na+, K+-ATPase activity (NKA), a reduction of erythrocyte membrane fluidity, a reduction of phospatydyl serine exposition on erythrocyte membranes, an alteration in erythrocyte fatty acid membrane profile (increase in MUFA and in ω6/ω3 ratio due to decrease in EPA and DHA) and a reduction of cholesterol content of erythrocyte membrane were found in Au compared to TD, without change in erythrocyte membrane sialic acid content and in lymphocyte membrane fluidity. Some Au clinical features appear to be correlated with these findings; in particular, hyperactivity score appears to be related with some parameters of the lipidomic profile and membrane fluidity, and ADOS and CARS score are inversely related to peroxiredoxin II levels. Oxidative stress and erythrocyte structural and functional alterations may play a role in the pathogenesis of Autism Spectrum Disorders and could be potentially utilized as peripheral biomarkers.


  • 2015-04-14


  • Doctoral Thesis
  • PeerReviewed


  • application/pdf



Ghezzo, Alessandro (2015) The biological basis of autism spectrum disorders: evaluation of oxidative stress and erytrocyte membrane alterations, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze farmacologiche e tossicologiche, dello sviluppo e del movimento umano , 27 Ciclo. DOI 10.6092/unibo/amsdottorato/7116.