• Computational Modelling of Cardiac Electrophysiology: from Cell to Bedside
  • Modellistica Computazionale dell'Elettrofisiologia Cardiaca: dalla Cellula al Paziente
  • Passini, Elisa <1982>

Subject

  • ING-INF/06 Bioingegneria elettronica e informatica

Description

  • Heart diseases are the leading cause of death worldwide, both for men and women. However, the ionic mechanisms underlying many cardiac arrhythmias and genetic disorders are not completely understood, thus leading to a limited efficacy of the current available therapies and leaving many open questions for cardiac electrophysiologists. On the other hand, experimental data availability is still a great issue in this field: most of the experiments are performed in vitro and/or using animal models (e.g. rabbit, dog and mouse), even when the final aim is to better understand the electrical behaviour of in vivo human heart either in physiological or pathological conditions. Computational modelling constitutes a primary tool in cardiac electrophysiology: in silico simulations, based on the available experimental data, may help to understand the electrical properties of the heart and the ionic mechanisms underlying a specific phenomenon. Once validated, mathematical models can be used for making predictions and testing hypotheses, thus suggesting potential therapeutic targets. This PhD thesis aims to apply computational cardiac modelling of human single cell action potential (AP) to three clinical scenarios, in order to gain new insights into the ionic mechanisms involved in the electrophysiological changes observed in vitro and/or in vivo. The first context is blood electrolyte variations, which may occur in patients due to different pathologies and/or therapies. In particular, we focused on extracellular Ca2+ and its effect on the AP duration (APD). The second context is haemodialysis (HD) therapy: in addition to blood electrolyte variations, patients undergo a lot of other different changes during HD, e.g. heart rate, cell volume, pH, and sympatho-vagal balance. The third context is human hypertrophic cardiomyopathy (HCM), a genetic disorder characterised by an increased arrhythmic risk, and still lacking a specific pharmacological treatment.
  • Le malattie cardiache e cardiovascolari sono ad oggi la causa principale di morte nel mondo. Tuttavia, i meccanismi ionici responsabili di aritmie o di altre malattie cardiache non sono ancora del tutto conosciuti: questo spesso porta a una minore o mancata efficacia delle terapie attualmente disponibili, e lascia numerose domande aperte per gli elettrofisiologi. Inoltre, la difficoltà di acquisizione dei dati sperimentali rimane ancora uno dei problemi più grandi in questo campo. Infatti la maggior parte dei dati vengono raccolti in vitro e/o utilizzando modelli animali come coniglio, ratto o cane, sebbene l’obiettivo ultimo sia quello di una più completa comprensione del comportamento elettrico del cuore in vivo e nell’uomo, in condizioni sia fisiologiche sia patologiche. In questo contesto, la modellistica computazionale costituisceuno strumento indispensabile: infatti, le simulazioni in silico permettono di superare, almeno in parte, i limiti sperimentali, e di investigare i meccanismi ionici alla base di specifici fenomeni a diversi livelli (singola cellula, tessuto, intero cuore). Una volta validati sui dati sperimentali, i modelli matematici possono essere dunque utilizzati per fare predizioni, testare ipotesi e valutare l’efficacia di eventuali interventi farmacologici. Lo scopo di questa tesi di dottorato è stato quello di applicare tecniche di modellistica matematica a problemi di elettrofisiologia cardiaca, in particolare utilizzando modelli di potenziale d’azione (PA) umano in tre diversi contesti: variazioni elettrolitiche nel sangue, effetti della terapia dialitica sul cuore e cardiomiopatia ipertrofica.

Date

  • 2015-05-08

Type

  • Doctoral Thesis
  • PeerReviewed

Format

  • application/pdf

Identifier

urn:nbn:it:unibo-15070

Passini, Elisa (2015) Modellistica Computazionale dell'Elettrofisiologia Cardiaca: dalla Cellula al Paziente, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Bioingegneria , 27 Ciclo. DOI 10.6092/unibo/amsdottorato/7187.

Relations