• Development of Luminescent Semiconductor Nanocrystals (Quantum Dots) for Photoinduced Applications
  • La Rosa, Marcello <1989>

Subject

  • CHIM/03 Chimica generale e inorganica

Description

  • This thesis focuses on the development of luminescent semiconductor nanocrystals quantum dots (QDs) for photoinduced applications. QDs are promising nanomaterials with size-dependent optical properties and are attractive for applications in several fields. However, QDs are commonly hydrophobic and many interesting applications require their compatibility with water or at least with a polar environment, meaning a post-synthetic treatment is required to confer a different solubility. During these studies, a new method for transferring QDs from an apolar solvent to another one polar has been successfully developed, by exploiting lipoic acid, as a versatile surface capping agent. Moreover lipoic acid is a chiral molecule so a possible induced dichroism effect, which has been investigated, as well as its dependence on the size of nanocrystals. A major aim of this research was the development of QDs exhibiting reversible electronic energy transfer (REET). Such a process is a bidirectional energy transfer between the photoexcited QDs and suitable chromophoric units attached on their surface, where the most important consequence is the elongation of the luminescence lifetime of the QD. Strong experimental evidence for REET and accompanying modifications of the photophysical properties has been obtained. Such a process to our knowledge has never been observed in QD-based systems. Finally, a novel protocol for depositing charged QDs on a locally polarized glassy substrate has been developed in collaboration with Dr. Marc Dussauze of the University of Bordeaux.

Date

  • 2017-05-17

Type

  • Doctoral Thesis
  • PeerReviewed

Format

  • application/pdf

Identifier

urn:nbn:it:unibo-20691

La Rosa, Marcello (2017) Development of Luminescent Semiconductor Nanocrystals (Quantum Dots) for Photoinduced Applications, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Chimica , 29 Ciclo. DOI 10.6092/unibo/amsdottorato/8059.

Relations