• Multi-target-directed ligands: application to the Alzheimer's disease
  • Simoni, Elena <1979>

Subject

  • CHIM/08 Chimica farmaceutica

Description

  • The MTDL (multi-target-directed ligand) design strategy is used to develop single chemical entities that are able to simultaneously modulate multiple targets. The development of such compounds might disclose new avenues for the treatment of a variety of pathologies (e.g. cancer, AIDS, neurodegenerative diseases), for which an effective cure is urgently needed. This strategy has been successfully applied to Alzheimer’s disease (AD) due to its multifactorial nature, involving cholinergic dysfunction, amyloid aggregation, and oxidative stress. Despite many biological entities have been recognized as possible AD-relevant, only four achetylcholinesterase inhibitors (AChEIs) and one NMDA receptor antagonist are used in therapy. Unfortunately, such compounds are not disease-modifying agents behaving only as cognition enhancers. Therefore, MTDL strategy is emerging as a powerful drug design paradigm: pharmacophores of different drugs are combined in the same structure to afford hybrid molecules. In principle, each pharmacophore of these new drugs should retain the ability to interact with its specific site(s) on the target and, consequently, to produce specific pharmacological responses that, taken together, should slow or block the neurodegenerative process. To this end, the design and synthesis of several examples of MTDLs for combating neurodegenerative diseases have been published. This seems to be the more appropriate approach for addressing the complexity of AD and may provide new drugs for tackling the multifactorial nature of AD, and hopefully stopping its progression. According to this emerging strategy, in this work thesis different classes of new molecular structures, based on the MTDL approach, have been developed. Moreover, curcumin and its constrained analogs have currently received remarkable interest as they have a unique conjugated structure which shows a pleiotropic profile that we considered a suitable framework in developing MTDLs. In fact, beside the well-known direct antioxidant activity, curcumin displays a wide range of biological properties including anti-inflammatory and anti-amyloidogenic activities and an indirect antioxidant action through activation of the cytoprotective enzyme heme oxygenase (HO-1). Thus, since many lines of evidence suggest that oxidative stess and mitochondria impairment have a cental role in age-related neurodegenerative diseases such as AD, we designed mitochondria-targeted antioxidants by connecting curcumin analogs to different polyamine chains that, with the aid of electrostatic force, might drive the selected antioxidant moiety into mitochondria.

Date

  • 2010-04-15

Type

  • Doctoral Thesis
  • PeerReviewed

Format

  • application/pdf

Identifier

urn:nbn:it:unibo-2132

Simoni, Elena (2010) Multi-target-directed ligands: application to the Alzheimer's disease, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze farmaceutiche , 22 Ciclo.

Relations