• In situ real-time investigation of Organic Ultra-Thin-Film transistors: growth, electrical properties and biosensing applications
  • Quiroga, Santiago David <1977>

Subject

  • CHIM/02 Chimica fisica

Description

  • Organic electronics has grown enormously during the last decades driven by the encouraging results and the potentiality of these materials for allowing innovative applications, such as flexible-large-area displays, low-cost printable circuits, plastic solar cells and lab-on-a-chip devices. Moreover, their possible field of applications reaches from medicine, biotechnology, process control and environmental monitoring to defense and security requirements. However, a large number of questions regarding the mechanism of device operation remain unanswered. Along the most significant is the charge carrier transport in organic semiconductors, which is not yet well understood. Other example is the correlation between the morphology and the electrical response. Even if it is recognized that growth mode plays a crucial role into the performance of devices, it has not been exhaustively investigated. The main goal of this thesis was the finding of a correlation between growth modes, electrical properties and morphology in organic thin-film transistors (OTFTs). In order to study the thickness dependence of electrical performance in organic ultra-thin-film transistors, we have designed and developed a home-built experimental setup for performing real-time electrical monitoring and post-growth in situ electrical characterization techniques. We have grown pentacene TFTs under high vacuum conditions, varying systematically the deposition rate at a fixed room temperature. The drain source current IDS and the gate source current IGS were monitored in real-time; while a complete post-growth in situ electrical characterization was carried out. At the end, an ex situ morphological investigation was performed by using the atomic force microscope (AFM). In this work, we present the correlation for pentacene TFTs between growth conditions, Debye length and morphology (through the correlation length parameter). We have demonstrated that there is a layered charge carriers distribution, which is strongly dependent of the growth mode (i.e. rate deposition for a fixed temperature), leading to a variation of the conduction channel from 2 to 7 monolayers (MLs). We conciliate earlier reported results that were apparently contradictory. Our results made evident the necessity of reconsidering the concept of Debye length in a layered low-dimensional device. Additionally, we introduce by the first time a breakthrough technique. This technique makes evident the percolation of the first MLs on pentacene TFTs by monitoring the IGS in real-time, correlating morphological phenomena with the device electrical response. The present thesis is organized in the following five chapters. Chapter 1 makes an introduction to the organic electronics, illustrating the operation principle of TFTs. Chapter 2 presents the organic growth from theoretical and experimental points of view. The second part of this chapter presents the electrical characterization of OTFTs and the typical performance of pentacene devices is shown. In addition, we introduce a correcting technique for the reconstruction of measurements hampered by leakage current. In chapter 3, we describe in details the design and operation of our innovative home-built experimental setup for performing real-time and in situ electrical measurements. Some preliminary results and the breakthrough technique for correlating morphological and electrical changes are presented. Chapter 4 meets the most important results obtained in real-time and in situ conditions, which correlate growth conditions, electrical properties and morphology of pentacene TFTs. In chapter 5 we describe applicative experiments where the electrical performance of pentacene TFTs has been investigated in ambient conditions, in contact to water or aqueous solutions and, finally, in the detection of DNA concentration as label-free sensor, within the biosensing framework.
  • Negli ultimi decenni l’organica elettronica ha subito un’importante crescita spinta da diversi risultati alquanto incoraggianti e dalle potenziali nuove applicazioni che possono dare luogo agli innumerevoli materiali organici esistenti, tra cui gli schermi flessibili e di grande superficie, i circuiti stampabili a basso costo, le celle solari plastiche e i dispositivi di tipo “lab-on-a-chip”. Inoltre, i campi di applicazione sono così vasti da comprendere medicina, biotecnologia, processi di automazione e monitoraggio dei parametri ambientali, nonché la difesa e la sicurezza. Tuttavia un considerevole numero di domande deve ancora trovare risposta. Tra queste il meccanismo di operazione, che rimane senza essere completamente compreso e la correlazione tra la morfologia e la risposta elettrica dei dispositivi. Nonostante si sia ampiamente riconosciuto l’importante ruolo che il modo di crescita ha sulla prestazione dei dispositivi, non è stata realizzata un’investigazione esaustiva dell’argomento. Il principale obbiettivo di questa tesi è quindi quello di trovare una correlazione tra i modi di crescita e le proprietà elettriche in transistor a film sottile (TFTs) di pentacene. Al fine di studiare la dipendenza della prestazione elettrica dei TFTs di pentacene al variare dello spessore, si è proceduto all’ideazione e alla costruzione di una strumentazione sperimentale ad hoc, che permettesse di realizzare misurazioni elettriche in tempo reale e caratterizzazioni in situ alla fine della deposizione. Abbiamo provveduto alla crescita di dispositivi TFTs di pentacene in condizione di alto vuoto, variando metodologicamente la velocità di deposizione a temperatura ambiente prefissata. Durante la crescita, la corrente di drain IDS e la corrente di gate IGS sono state monitorate in tempo reale e al termine di ogni deposizione si è proceduto alla caratterizzazione elettrica in situ. Alla fine si è investigato sulla morfologia ex situ con l’utilizzo di un microscopio di forza atomica (AFM). Nel presente lavoro si riporta la correlazione valida per TFTs di pentacene tra le condizioni di crescita, la lunghezza di Debye e la morfologia (quantificata attraverso la lunghezza di correlazione). Abbiamo dimostrato che i portatori di carica vengono distribuiti nei layers a seconda del modo di crestita eseguito dal film (che dipende dalla velocità di deposizione per una data temperatura), il quale porta a una variazione del canale attivo dai 2 ai 7 monolayers (MLs). I nostri risultati hanno conciliato altri riportati in precedenza, che sembravano alquanto contradittori e hanno evidenziato la necessità di rielaborare il concetto di lunghezza di Debye in dispositivi a strati a bassa dimensione. Inoltre, per la prima volta, si presenta un’innovativa tecnica che indica l’avvenimento della percolazione attraverso il monitoraggio elettrico della IGS durante la deposizione del film sottile, correlando i fenomeni morfologici con quelli elettrici. Il capitolo 1 di questa tesi ci introduce nel mondo dell’elettronica organica e ci spiega il funzionamento del TFT. Il capitolo 2, ci spiega la crescita dei materiali organici, offrendo prima un fondamento teorico per poi passare alla sperimentazione; dopodiché si esibisce la prestazione elettrica tipica dei dispositivi di pentacene e si presenta la suddetta tecnica correttiva sugli effetti della corrente di fuga. Nel capitolo 3 si presenta la strumentazione costruita ad hoc per il monitoraggio elettrico in tempo reale e in situ; si illustrano inoltre alcuni risultati preliminari, assieme alla suddetta tecnica “breakthrough”. Intanto, nel capitolo 4, si riportano i più rilevanti risultati ottenuti in tempo reale e in situ, che correlano il modo di crescita, le proprietà elettriche e la morfologia dei TFTs di pentacene. Infine, il capitolo 5, si concentra nello studio sulla risposta elettrica dei dispositivi TFTs di pentacene in contatto con l’ambiente, con acqua e altre soluzioni acquose e, principalmente, della sua applicazione nella biosensoristica come sensore di concentrazione di DNA.

Date

  • 2010-06-04

Type

  • Doctoral Thesis
  • PeerReviewed

Format

  • application/pdf

Identifier

urn:nbn:it:unibo-2151

Quiroga, Santiago David (2010) In situ real-time investigation of Organic Ultra-Thin-Film transistors: growth, electrical properties and biosensing applications, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze chimiche , 22 Ciclo. DOI 10.6092/unibo/amsdottorato/2891.

Relations