• Multimodal Legal Information Retrieval
  • Adebayo, Kolawole John <1986>


  • INF/01 Informatica


  • The goal of this thesis is to present a multifaceted way of inducing semantic representation from legal documents as well as accessing information in a precise and timely manner. The thesis explored approaches for semantic information retrieval (IR) in the Legal context with a technique that maps specific parts of a text to the relevant concept. This technique relies on text segments, using the Latent Dirichlet Allocation (LDA), a topic modeling algorithm for performing text segmentation, expanding the concept using some Natural Language Processing techniques, and then associating the text segments to the concepts using a semi-supervised text similarity technique. This solves two problems, i.e., that of user specificity in formulating query, and information overload, for querying a large document collection with a set of concepts is more fine-grained since specific information, rather than full documents is retrieved. The second part of the thesis describes our Neural Network Relevance Model for E-Discovery Information Retrieval. Our algorithm is essentially a feature-rich Ensemble system with different component Neural Networks extracting different relevance signal. This model has been trained and evaluated on the TREC Legal track 2010 data. The performance of our models across board proves that it capture the semantics and relatedness between query and document which is important to the Legal Information Retrieval domain.


  • 2018-04-27


  • Doctoral Thesis
  • PeerReviewed


  • application/pdf



Adebayo, Kolawole John (2018) Multimodal Legal Information Retrieval, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Law, science and technology , 30 Ciclo. DOI 10.6092/unibo/amsdottorato/8634.