• Development of an innovative bioreactor system for human bone tissue engineering
  • Lovecchio, Joseph <1987>

Subject

  • ING-INF/06 Bioingegneria elettronica e informatica

Description

  • In the last decades significant progress has been carried out leading to significant advances in the development of engineered tissues, thanks to taking into account three fundamental components: the cells to address tissue formation, a scaffold useful as substrate for tissue growth and development, growth factors and/or biomechanical stimuli to address the differentiation of cells within the scaffolds. In particular, mechanical stimuli are known to play a key role in bone tissue formation and mineralization. Mechanical actuators, namely bioreactor systems, can be used to enhance in vitro culture steps in the overall cell-based tissue engineering strategy of expanding in vitro a stem cell source to be cultured and differentiated on a three-dimensional scaffold, aiming at implanting this scaffold in vivo. The purpose of this study is thus to design a stand-alone perfusion/compression bioreactor system. The developed prototypal system allows to apply physical stimuli mimicking native loading regimens. The results obtained in human bone marrow stem cells (hBMSCs)  onboard of a 3D graphene/chitosan scaffold indicate that their exposure to a controlled dynamic environment is suitable to address bone tissue commitment.

Date

  • 2018-05-04

Type

  • Doctoral Thesis
  • PeerReviewed

Format

  • application/pdf

Identifier

urn:nbn:it:unibo-23413

Lovecchio, Joseph (2018) Development of an innovative bioreactor system for human bone tissue engineering, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Ingegneria biomedica, elettrica e dei sistemi , 30 Ciclo. DOI 10.6092/unibo/amsdottorato/8676.

Relations