• Development and experimental validation of a knock induced damage model and real-time implementation of model-based strategies to control knock intensity in boosted gasoline engines
  • Rojo, Nahuel <1988>

Subject

  • ING-IND/08 Macchine a fluido

Description

  • This PhD thesis reports the main activities carried out during the 3 years long “Mechanics and advanced engineering sciences” course, at the Department of Industrial Engineering of the University of Bologna. The research project title is “Development and analysis of high efficiency combustion systems for internal combustion engines” and the main topic is knock, one of the main challenges for boosted gasoline engines. Through experimental campaigns, modelling activity and test bench validation, 4 different aspects have been addressed to tackle the issue. The main path goes towards the definition and calibration of a knock-induced damage model, to be implemented in the on-board control strategy, but also usable for the engine calibration and potentially during the engine design. Ionization current signal capabilities have been investigated to fully replace the pressure sensor, to develop a robust on-board close-loop combustion control strategy, both in knock-free and knock-limited conditions. Water injection is a powerful solution to mitigate knock intensity and exhaust temperature, improving fuel consumption; its capabilities have been modelled and validated at the test bench. Finally, an empiric model is proposed to predict the engine knock response, depending on several operating condition and control parameters, including injected water quantity.

Date

  • 2019-03-28

Type

  • Doctoral Thesis
  • PeerReviewed

Format

  • application/pdf

Identifier

urn:nbn:it:unibo-25242

Rojo, Nahuel (2019) Development and experimental validation of a knock induced damage model and real-time implementation of model-based strategies to control knock intensity in boosted gasoline engines, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Meccanica e scienze avanzate dell'ingegneria , 31 Ciclo. DOI 10.48676/unibo/amsdottorato/8915.

Relations