• Dissecting the Heat-Stress Tolerance QTLome in Durum Wheat
  • Groli, Eder Licieri <1988>

Subject

  • AGR/07 Genetica agraria

Description

  • Heat stress negatively affects wheat performance during its entire cycle, particularly during the reproductive stage. In view of the climate change and the prediction of a continued increase in temperature in the new future, it is urgent to concentrate efforts to discover novel genetic sources able to improve the resilience of wheat to heat stress. In this direction, this study addressed two different experiments in durum wheat to identify novel QTLs suitable to be applied in marker-assisted selection for heat tolerance. Chlorophyll fluorescence (ChlF) is a valuable indicator of plant response to environmental changes allowing a detailed assessment of PSII activity in view of its non-invasive measurement and high-throughput phenotyping. In the first study (Chapter 2), the Light-Induced Fluorescence Transient (LIFT) method was used to access ChlF data to map QTLs for ChlF-related traits during the vegetative growth stage in durum wheat under heat stress condition. Our results provide evidence that LIFT consistently measures ChlF at the level of high-throughput phenotyping combined with high accuracy which is required for Genome-Wide Association Study (GWAS) aimed at identifying genomic regions affecting PSII activity. The 50 QTLs identified for ChlF-related traits under heat stress mostly clustered into five chromosomes hotspots unrelated to phenology, a feature that makes these QTLs a valuable asset for marker-assisted breeding programs across different latitudes. In the second study (Chapter 3), a set of 183 accessions suitable for GWAS, was exposed to optimal and high temperature during two crop seasons under field conditions. Important agronomic traits were evaluated in order to identify valuable QTLs for GY and its components. The GWAS analysis identified several QTLs in the single years as well as in the joint analysis. From the total QTLs identified, 13 QTL clusters can be highlighted to be affecting heat tolerance across different years and/or different traits.

Date

  • 2020-04-01

Type

  • Doctoral Thesis
  • PeerReviewed

Format

  • application/pdf

Identifier

urn:nbn:it:unibo-26052

Groli, Eder Licieri (2020) Dissecting the Heat-Stress Tolerance QTLome in Durum Wheat, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze e tecnologie agrarie, ambientali e alimentari , 32 Ciclo. DOI 10.48676/unibo/amsdottorato/9090.

Relations