• Semiconducting Polymers for Electronic Biosensors and Biological Interfaces
  • Decataldo, Francesco <1992>


  • FIS/03 Fisica della materia


  • Bioeletronics aims at the direct coupling of biomolecular function units with standard electronic devices. The main limitations of this field are the material needed to interface soft living entities with hard inorganic devices. Conducting polymers enabled the bridging between these two separate worlds, owing to their biocompatibility, soft nature and the ability to be tailored according to the required application. In particular, the intrinsically conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) is one of the most promising polymers, having an excellent chemical and thermal stability, reversible doping state and high conductivity. This thesis relies on the use of PEDOT:PSS as semiconducting material for biological interfaces and biosensors. In detail, OECTs were demonstrated to be able to real-time monitor growth and detachment of both strong-barrier and no-barrier cells, according to the patterning of the device active area and the selected geometry. Thus, these devices were employed to assess silver nanoparticles (AgNPs) toxicity effects on cell lines, allowing further insights on citrate-coated AgNPs uptake by the cells and their toxic action, while demonstrating no cytotoxic activity of EG6OH-coated AgNPs. Moreover, PEDOT:PSS OECTs were proved to be capable of detecting oxygen dissolved in KCl or even cell culture medium, in the oxygen partial pressure range of 0-5%. Furthermore, PEDOT:PSS OECTs were biofunctionalized to impart specificity on the device sensing capabilities, through a biochemical functionalization strategy, electrically characterized. The resulting devices showed a proof of concept detection of a fundamental cytokine for cells undergoing osteogenic differentiation. Finally, PEDOT:PSS thickness-controlled films were employed as biocompatible, low-impedance and soft interfaces between the animal nerve and a gold electrode. The introduction of the plasticizer polyethylene glycol (PEG) enhanced the elasticity of the polymer, while keeping good conductivity and low-impedance properties. An in-vivo, chronic recording of the renal sympathetic nerve activity in rats demonstrated the efficiency of the device.


  • 2020-03-16


  • Doctoral Thesis
  • PeerReviewed


  • application/pdf



Decataldo, Francesco (2020) Semiconducting Polymers for Electronic Biosensors and Biological Interfaces, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Fisica , 32 Ciclo. DOI 10.6092/unibo/amsdottorato/9344.