• Modelling of ORC components and systems for low-medium temperature heat recovery applications with reduced environmental impact
  • Torricelli, Noemi <1993>

Subject

  • ING-IND/08 Macchine a fluido

Description

  • Although its great potential as low to medium temperature waste heat recovery (WHR) solution, the ORC technology presents open challenges that still prevent its diffusion in the market, which are different depending on the application and the size at stake. Focusing on the micro range power size and low temperature heat sources, the ORC technology is still not mature due to the lack of appropriate machines and working fluids. Considering instead the medium to large size, the technology is already available but the investment is still risky. The intention of this thesis is to address some of the topical themes in the ORC field, paying special attention in the development of reliable models based on realistic data and accounting for the off-design performance of the ORC system and of each of its components. Concerning the “Micro-generation” application, this work: i) explores the modelling methodology, the performance and the optimal parameters of reciprocating piston expanders; ii) investigates the performance of such expander and of the whole micro-ORC system when using Hydrofluorocarbons as working fluid or their new low GWP alternatives and mixtures; iii) analyzes the innovative ORC reversible architecture (conceived for the energy storage), its optimal regulation strategy and its potential when inserted in typical small industrial frameworks. Regarding the “Industrial WHR” sector, this thesis examines the WHR opportunity of ORCs, with a focus on the natural gas compressor stations application. This work provides information about all the possible parameters that can influence the optimal sizing, the performance and thus the feasibility of installing an ORC system. New WHR configurations are explored: i) a first one, relying on the replacement of a compressor prime mover with an ORC; ii) a second one, which consists in the use of a supercritical CO2 cycle as heat recovery system.

Date

  • 2022-04-11

Type

  • Doctoral Thesis
  • PeerReviewed

Format

  • application/pdf

Identifier

urn:nbn:it:unibo-28321

Torricelli, Noemi (2022) Modelling of ORC components and systems for low-medium temperature heat recovery applications with reduced environmental impact, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Meccanica e scienze avanzate dell'ingegneria , 34 Ciclo. DOI 10.48676/unibo/amsdottorato/10034.

Relations