• Analytical pyrolysis to study microplastics and other polymers in the environment
  • Coralli, Irene <1992>

Subject

  • CHIM/01 Chimica analitica

Description

  • Synthetic polymers constitute a wide class of materials which has enhanced the quality of human life, providing comforts and innovations. Anyway, the increasing production and the incorrect waste management, are leading to the occurrence of polymers in the environment, generating concern. To understand the extent of this issue, analytical investigation holds an essential position. Standardised methods have not established yet, and additional studies are required to improve the present knowledge. The main aim of this thesis was to provide comprehensive information about the potential of pyrolysis coupled with gas-chromatography and mass spectrometry (Py-GC-MS) for polymers investigation, from their characterisation to their identification and quantification in complex matrices. Water-soluble (poly(dimethylsiloxanes), PDMS bearing poly(ethylene glycol), PEG, side chains) and water-insoluble polymers (microplastics, MPs, and bioplastics) were studied. The different studies revealed the possibility to identify heterogeneous classes of polymers, fingerprinting the presence of PDMS copolymers and distinguishing chemically different polyurethanes (PURs). The occurrence of secondary reactions in pyrolysis of polymer mixtures was observed as possible drawback. Pyrolysis products indicative of secondary reactions and their reaction mechanisms were identified. Py-GC-MS also revealed its fundamental role for the identification of polymers composing commercial bioplastics items based. The results aided to identify chemicals that have the potential to migrate in sea waters. Investigations of environmental samples demonstrated the capability of Py-GC-MS to provide reliable, reproducible and comparable results about polymers in complex matrices (PEG-PDMS in sewage sludges and PURs and other MPs in road dusts and spider webs). Criticisms were especially found in quantitation, such as the retrieval reference materials, the construction of reliable calibration protocols and the occurrence of bias due to interferences between pyrolysis products. This thesis pursues the greater purpose to develop harmonised and standardised methods for environmental investigations of polymers, that is fundamental to assess the real state of the environment.

Date

  • 2023-03-20

Type

  • Doctoral Thesis
  • PeerReviewed

Format

  • application/pdf

Identifier

urn:nbn:it:unibo-29163

Coralli, Irene (2023) Analytical pyrolysis to study microplastics and other polymers in the environment, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Chimica , 35 Ciclo. DOI 10.48676/unibo/amsdottorato/10730.

Relations