• Seemingly unrelated linear regression for contaminated data based on Gaussian mixtures
  • Perrone, Gabriele <1994>

Subject

  • SECS-S/01 Statistica

Description

  • In this thesis, new classes of models for multivariate linear regression defined by finite mixtures of seemingly unrelated contaminated normal regression models and seemingly unrelated contaminated normal cluster-weighted models are illustrated. The main difference between such families is that the covariates are treated as fixed in the former class of models and as random in the latter. Thus, in cluster-weighted models the assignment of the data points to the unknown groups of observations depends also by the covariates. These classes provide an extension to mixture-based regression analysis for modelling multivariate and correlated responses in the presence of mild outliers that allows to specify a different vector of regressors for the prediction of each response. Expectation-conditional maximisation algorithms for the calculation of the maximum likelihood estimate of the model parameters have been derived. As the number of free parameters incresases quadratically with the number of responses and the covariates, analyses based on the proposed models can become unfeasible in practical applications. These problems have been overcome by introducing constraints on the elements of the covariance matrices according to an approach based on the eigen-decomposition of the covariance matrices. The performances of the new models have been studied by simulations and using real datasets in comparison with other models. In order to gain additional flexibility, mixtures of seemingly unrelated contaminated normal regressions models have also been specified so as to allow mixing proportions to be expressed as functions of concomitant covariates. An illustration of the new models with concomitant variables and a study on housing tension in the municipalities of the Emilia-Romagna region based on different types of multivariate linear regression models have been performed.

Date

  • 2023-06-15

Type

  • Doctoral Thesis
  • PeerReviewed

Format

  • application/pdf

Identifier

urn:nbn:it:unibo-29491

Perrone, Gabriele (2023) Seemingly unrelated linear regression for contaminated data based on Gaussian mixtures, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze statistiche , 35 Ciclo. DOI 10.48676/unibo/amsdottorato/11003.

Relations