• Continuos Flow Single Cell Separation into Open Microwell Arrays
  • Duqi, Enri

Subject

  • ING-INF/01 Elettronica

Description

  • A novel design based on electric field-free open microwell arrays for the automated continuous-flow sorting of single or small clusters of cells is presented. The main feature of the proposed device is the parallel analysis of cell-cell and cell-particle interactions in each microwell of the array. High throughput sample recovery with a fast and separate transfer from the microsites to standard microtiter plates is also possible thanks to the flexible printed circuit board technology which permits to produce cost effective large area arrays featuring geometries compatible with laboratory equipment. The particle isolation is performed via negative dielectrophoretic forces which convey the particles’ into the microwells. Particles such as cells and beads flow in electrically active microchannels on whose substrate the electrodes are patterned. The introduction of particles within the microwells is automatically performed by generating the required feedback signal by a microscope-based optical counting and detection routine. In order to isolate a controlled number of particles we created two particular configurations of the electric field within the structure. The first one permits their isolation whereas the second one creates a net force which repels the particles from the microwell entrance. To increase the parallelism at which the cell-isolation function is implemented, a new technique based on coplanar electrodes to detect particle presence was implemented. A lock-in amplifying scheme was used to monitor the impedance of the channel perturbed by flowing particles in high-conductivity suspension mediums. The impedance measurement module was also combined with the dielectrophoretic focusing stage situated upstream of the measurement stage, to limit the measured signal amplitude dispersion due to the particles position variation within the microchannel. In conclusion, the designed system complies with the initial specifications making it suitable for cellomics and biotechnology applications.

Date

  • 2012-04-30

Type

  • Doctoral Thesis
  • PeerReviewed

Format

  • application/pdf

Identifier

urn:nbn:it:unibo-4131

Duqi, Enri (2012) Continuos Flow Single Cell Separation into Open Microwell Arrays , [Dissertation thesis], Alma Mater Studiorum UniversitĂ  di Bologna. Dottorato di ricerca in Tecnologie dell'informazione , 24 Ciclo. DOI 10.6092/unibo/amsdottorato/4778.

Relations