• Numerical simulations of thermal convection at high Prandtl numbers
  • Simulazioni numeriche di convezione termica ad alti numeri di Prandtl
  • Numerical simulations of thermal convection at high Prandtl numbers
  • Silano, Gabriella

Subject

  • Thermal convection
  • Raylaigh-Benard convection
  • High Prandtl
  • Mantle convection
  • Moderate Rayleigh numbers
  • DNS code in cylindrical coordinates
  • Saturation regime
  • Confined flow heated from below
  • Buoyancy force
  • Nusselt number
  • Thermal boundary layer
  • Low Reynolds number
  • FLUIDODINAMICA AMBIENTALE (ENVIROMENTAL FLUID MECHANICS)
  • ICAR/01 IDRAULICA

Description

  • 2007/2008
  • In this thesis we present the results of an extensive campaign of direct numerical simulations of Rayleigh-B\'enard convection at high Prandtl numbers ($10^{-1}\leq Pr \leq 10^4$) and moderate Rayleigh numbers ($10^{5}\leq Pr \leq 10^9$). The computational domain is a cylindrical cell of aspect-ratio (diameter over cell height) $\Gamma=1/2$, with the no-slip condition imposed to the boundaries. By scaling the results, we find a $1/\sqrt{Pr}$ correction to apply to the free-fall velocity, obtaining a more appropriate representation of the large scale velocity at high $Pr$. We investigate the Nusselt and the Reynolds number dependence on $Ra$ and $Pr$, comparing the results to previous numerical and experimental work. At high $Pr$ the scaling behavior of the Nusselt number with respect to $Ra$ is generally consistent with the power-law exponent $0.309$. The Nusselt number is independent of $Pr$, even at the highest $Ra$ simulated. The Reynolds number scales as $Re\sim \sqrt{Ra}/Pr$, neglecting logarithmic corrections. We analyze the global and local features of viscous and thermal boundary layers and their scaling behavior with respect to Rayleigh and Prandtl numbers, and with respect to Reynolds and Peclet numbers. We find that the flow approaches a saturation regime when Reynolds number decreases below the critical value $Re_s\simeq 40$. The thermal boundary layer thickness turns out to increase slightly even when the Peclet number increases. We explain this behavior as a combined effect of the Peclet number and the viscous boundary layer influences. The range of $Ra$ and $Pr$ simulated contains steady, periodic and turbulent solutions. A rough estimate of the transition from steady to unsteady flow is obtained by monitoring the time-evolution of the system until it reaches stationary solutions ($Ra_U\simeq 7.5 \times 10^6$ at $Pr=10^3$). We find multiple solutions as long-term phenomena at $Ra=10^8$ and $Pr=10^3$ which, however, do not result in significantly different Nusselt number. One of these multiple solutions, even if stable for a long time interval, shows a break in the mid-plane symmetry of the temperature profile. The result is similar to that of some non-Boussinesq effects. We analyze the flow structures through the transitional phases by direct visualizations of the temperature and velocity fields. We also describe how the behavior of the flow structures changes for increasing $Pr$. A wide variety of large-scale circulations and plumes structures are found. The single-roll circulation is characteristic only of the steady and periodic solutions. For other solutions, at lower $Pr$, the mean flow generally consists of two opposite toroidal structures; at higher $Pr$, the flow is organized in multi-cell structures extending mostly in the vertical direction. At high $Pr$, plumes detach from sheet-like structures. The different large-scale-structure signatures are generally reflected in the data trends with respect to $Ra$, but not in those with respect to $Pr$. In particular, the Nusselt number is independent of $Pr$, even when the flow structures appear strongly different varying $Pr$. In order to assess the reliability of the data-set we perform a systematic analysis of the error affecting the data. Refinement grid analysis is extensively applied.
  • ---------------------------------------------------------------------------------------- In questa tesi presentiamo i risultati di un'estensiva campagna di simulazioni numeriche dirette della convezione di Rayleigh-B\'enard ad alti numeri di Prandtl ($10^{-1}\leq Pr \leq 10^4$) e moderati numeri di Rayleigh ($10^{5}\leq Pr \leq 10^9$). Il dominio computazionale \`e una cella cilindrica di allungamento (diametro su altezza cella) $\Gamma=1/2$, con condizioni di non-slittamento ai contorni. Scalando i risultati, troviamo una correzione di $1/\sqrt{Pr}$ da applicare alla velocit\`a di caduta libera, ottenendo una rappresentazione pi\`u appropriata della velocit\`a di larga scala ad elevati $Pr$. Investighiamo la dipendenza del numero di Nusselt e del numero di Reynolds da $Ra$ e $Pr$, comparando i risultati con precedenti lavori numerici e sperimentali. Ad elevati $Pr$ il comportamento di scala del numero di Nusselt rispetto a $Ra$ \`e generalmente compatibile con l'esponente di legge di potenza $0.309$. Il numero di Nusselt \`e indipendente da $Pr$, anche per il pi\`u alto $Ra$ simulato. Il numero di Reynolds scala come $Re\sim \sqrt{Ra}/Pr$, a meno di correzioni logaritmiche. Analizziamo le caratteristiche locali e globali degli strati limite viscosi e termici, ed il loro comportamento di scala rispetto ai numeri Rayleigh e Prandtl, e rispetto ai numeri Reynolds e Peclet. Troviamo che il flusso approccia un regime di saturazione quando il numero di Reynolds scende sotto il valore critico $Re_s\simeq 40$. Lo spessore dello strato limite termico comincia a crescere leggermente anche quando in numero di Peclet aumenta. Spieghiamo questo comportamento come un effetto combinato delle influenze del numero di Peclet e dello strato limite viscoso. L'intervallo di $Ra$ e $Pr$ simulato contiene soluzioni stazionarie, periodiche e turbolente. Una stima approssimata della transizione da flusso stazionario a non stazionario \`e ottenuta monitorando l'evoluzione temporale del sistema fino al raggiungimento di soluzioni stazionarie o statisticamente stazionarie ($Ra_U\simeq 7.5 \times 10^6$ a $Pr=10^3$). Troviamo soluzioni multiple come fenomeni di lungo termine a $Ra=10^8$ e $Pr=10^3$ che, comunque, non comportano differenze significative nel numero di Nusselt. Una di queste soluzioni multiple, anche se stabile per un lungo intervallo di tempo, mostra una rottura della simmetria del profilo di temperatura rispetto al piano mediano. Il risultato \`e simile a quello di alcuni effetti di non-Boussinesq. Analizziamo le strutture del flusso nelle fasi di transizione tramite visualizzazioni dirette dei campi di velocit\`a e temperatura. Descriviamo inoltre come il comportamento delle strutture del flusso cambia al crescere di $Pr$. Un'ampia variet\`a di circolazioni di larga scala e strutture a pennacchio vengono trovate. La circolazione a singolo anello \`e caratteristica solo delle soluzioni stazionarie e periodiche. Per le altre soluzioni, a $Pr$ pi\`u bassi, il flusso medio \`e generalmente composto da due strutture toroidali opposte; a $Pr$ pi\`u alti, il flusso \`e organizzato in strutture multi-cellulari che si estendono maggiormente in direzione verticale. Ad alti $Pr$, pennacchi si staccano da strutture simili a fogli. Le impronte delle differenti strutture di larga scala si riflettono generalmente nell'andamento dei dati rispetto a $Ra$, ma non rispetto a $Pr$. In particolare, il numero di Nusselt \`e indipendente da $Pr$, anche quando le strutture del flusso appaiono molto differenti al variare di $Pr$. Per stabilire l'affidabilit\`a dell'insieme dei dati, effettuiamo un'analisi sistematica degli errori a cui i dati sono soggetti. L'analisi di raffinamento della griglia \`e largamente applicata.
  • XXI Ciclo
  • 1976

Date

  • 2009-06-01T07:57:37Z
  • 2009-06-01T07:57:37Z
  • 2009-04-28

Type

  • Doctoral Thesis

Format

  • application/pdf

Identifier